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Abstract

The two-dimensional incompressible viscous flow past an impulsively started circular cylinder for a wide range of

Reynolds numbers (Re ¼ 20–9500) is studied computationally by using an explicit Taylor series expansion- and least
squares-based lattice Boltzmann method. The final equation for distribution function in our method is in an explicit

form and essentially has no limitation on choice of mesh structure and lattice model. It can be easily applied to sim-

ulation of flows with curved boundaries such as the problem considered in this work. For the flow past an impulsively

started circular cylinder, numerical results obtained by present method agree very well with experimental data and

computational results of Navier–Stokes equations available in the literature.
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1. Introduction

As a classical problem in fluid mechanics and a prototype of unsteady separated flows, the impulsively

started cylinder problem has been the subject of many theoretical, experimental and computational works

in the last century. Theoretical works of an impulsively started flow are generally based on the boundary-

layer theory. Blasius [1] in 1908 first obtained a second order time series solution of this problem in the

limiting case of infinite Reynolds number. Subsequently, many works have been carried out to attempt

obtaining higher order solutions [2–6]. Among them, the most notable works are those of Collins and

Dennis [4,5] based on the boundary layer equation and Bar-Lev and Yang [6] based on the vorticity

equation. Both works provided extensive short-time information for flow quantities including vorticity
field, streamlines and body forces.
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Many experimental investigations on unsteady flow around an impulsively started circular cylinder have

been reported in the literature [7–11]. Among them, the works presented by Bouard and Coutanceau in

1980 seem to be the best. In their works, the phenomena of the formation and the development of the main

and secondary vortices have been studied qualitatively and quantitatively in detail for Reynolds numbers

up to 104.

Impulsively started flows present a serious challenge for numerical methods. Difficulties exist in the

formulation of the boundary and initial conditions for the problem. Because the flow structure of this

problem is complex and its development at early stage is very important to our understanding of the
separation process, high-resolution simulations are necessary. The first computation of unsteady flow

around an impulsively started cylinder was given in 1958 by Payen [12] for Reynolds numbers of 40 and

100. After that, numerous computations have been performed, and most of them are based on the vorticity-

stream function formulation by using Eulerian, Lagrangian and hybrid methods for discretization. The

most notable numerical works in recent years are those done by Loc [13], Loc and Bouard [14], Chang and

Chern [15] and Koumoutsakos and Leonard [16]. Their works gave an extensive study of the wake length,

separation angle, drag coefficient and vorticity distribution for Reynolds numbers up to 104. A high-res-

olution simulation with nearly complete and persuasive analysis of the underlying mechanism of unsteady
separation has been presented by Koumoutsakos and Leonard [16].

It is indicated that all above numerical works are based on the macroscopic governing equations (Na-

vier–Stokes equations), and numerical implementations have been becoming more and more complicated

for obtaining high-resolution results. As an alternative computational fluid dynamics approach, the lattice

Boltzmann method (LBM) has achieved a great success in fluid engineering in recent years [17–24]. Unlike

the traditional CFD tools, which are based on the discretization of macroscopic continuum equations, the

LBM is based on microscopic models and mesoscopic kinetic equations, and the macroscopic dynamics of a

fluid is the result of the collective behavior of many microscopic particles in the system. The LBM has been
proved to recover the Navier–Stokes equation by using the Chapman–Enskog expansion [25]. The major

advantages of the LBM are its explicit feature of the governing equation-Lattice Boltzmann equation

(LBE), easy for parallel computation, and simple implementation of boundary conditions on curved

boundaries.

On the other hand, we should indicate that the standard LBE is restricted to the lattice-uniformity. So, it

is usually applied on a uniform mesh in the Cartesian coordinate system, and cannot be directly applied to

problems with complex geometry. Currently, there are two ways to improve the standard LBM so that it

can be applied to complex problems. One is the interpolation-supplemented LBM (ISLBM) proposed by
He and Doolen [19]. They successfully applied this approach to simulate flows past an impulsively started

cylinder. The other is based on the solution of a differential lattice Boltzmann equation (LBE). For complex

problems, the differential LBE can be solved by the finite difference (FDLBE) method with the help of

coordinate transformation [20] or by the finite volume (FVLBE) approach [23]. Numerical experiences have

shown that these methods have good capability in real applications. However, the ISLBE has an extra

computational effort for interpolation at every time step, and it also has a strict restriction on selection of

interpolation points. For the FDLBE and FVLBE methods, one needs to select efficient approaches such as

upwind schemes to do numerical discretization in order to get the stable solution. As a consequence, the
computational efficiency greatly depends on the selected numerical scheme.

In order to implement the LBE more efficiently for flows with complex geometry, Shu et al. [26] recently

developed a new version of LBM, which is based the standard LBM, the well-known Taylor series ex-

pansion, the idea of developing Runge–Kutta method [27], and the least squares approach [28]. The final

form of the method is an algebraic formulation, in which the coefficients only depend on the coordinates of

mesh points and lattice velocity, and are computed in advance. The new method can also be applied to

different lattice models. As shown in [26], for the driven cavity flow problem, the method can be easily

applied to the uniform mesh and the non-uniform mesh. With the use of rectangular mesh, the method can
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be applied to both the nine-velocity model and the seven-velocity model. Both velocity models provide the

same numerical results but the seven-velocity model requires less computational effort. We also obtained

very accurate results at Re ¼ 104 with the use of non-uniform mesh. This shows that the numerical viscosity
is well controlled in the new method. To further validate this method, the two-dimensional incompressible

viscous flow past an impulsively started circular cylinder was simulated in this work for a wide range of

Reynolds numbers (Re ¼ 20–9500). The obtained numerical results are very accurate. They are compared
well with available experimental data and numerical results of Navier–Stokes solvers.

2. Taylor series expansion- and least squares-based LBM

The method developed in this work is based on the fact that the distribution function is a continuous

function in physical space and can be well defined for any mesh systems. Let us start with the standard

LBM. The two dimensional, standard LBE with BGK approximation can be written as

faðxþ eaxdt; y þ eaydt; t þ dtÞ ¼ faðx; y; tÞ þ
f eqa ðx; y; tÞ � faðx; y; tÞ

s
; a ¼ 0; 1; . . . ;N ; ð1Þ

where s is the single relaxation time; fa is the density distribution function along the a direction; f eqa is its

corresponding equilibrium state, which depends on the local macroscopic variables such as density q and
velocity Uðu; vÞ; dt is the time step and eaðeax; eayÞ is the particle velocity in the a direction; and N is the
number of discrete particle velocities. Obviously, the standard LBE consists of two steps: collision and

streaming. The macroscopic density q and momentum density qU are defined as

q ¼
XN
a¼0

fa; qU ¼
XN
a¼0

faea: ð2Þ

Suppose that a particle is initially at the grid point ðx; y; tÞ. Along the a direction, this particle will stream
to the position ðxþ eaxdt; y þ eaydt; t þ dtÞ. For a uniform lattice, dx ¼ eaxdt, dy ¼ eaydt. So,

ðxþ eaxdt; y þ eaydtÞ is on the grid point. In other words, Eq. (1) can be used to update the density dis-
tribution functions exactly at the grid points. However, for a non-uniform grid, ðxþ eaxdt; y þ eaydtÞ is
usually not at the grid point ðxþ dx; y þ dyÞ. In the numerical simulation, we are only interested in the
density distribution function at the mesh point for all the time levels. So, the macroscopic properties such as

the density, flow velocity can be evaluated at every mesh point. To get the density distribution function at

the grid point ðxþ dx; y þ dyÞ and the time level t þ dt, we need to apply the Taylor series expansion or
other interpolation techniques such as the one used by He et al. [19]. In this work, the Taylor series ex-

pansion is used. Note that the time level for the position ðxþ eaxdt; y þ eaydtÞ and the grid point
ðxþ dx; y þ dyÞ is the same, that is, t þ dt. So, the expansion in the time direction is not necessary. As shown
in Fig. 1, we let point A represent the position ðxA; yAÞ, point A0 represent the position ðxA þ eaxdt; yA þ eaydtÞ,

Fig. 1. Configuration of particle movement along the a direction.
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and point P represent the position ðxP ; yP Þ. Using Eq. (1), we can get the density distribution function at the
position A0 as

faðA0; t þ dtÞ ¼ faðA; tÞ þ ½f eqa ðA; tÞ � faðA; tÞ�=s: ð3Þ

For the general case, A0 may not coincide with the mesh point P . In the numerical simulation, we are only
interested in the distribution function at the mesh point for all the time levels. So, the macroscopic

properties such as the density, flow velocity can be evaluated at every mesh point. In this case, we need to
obtain the density distribution function at the mesh point P . This can be done by applying the Taylor series
expansion in the spatial direction only. With Taylor series expansion, faðA0; t þ dtÞ can be approximated by
the corresponding function and its derivatives at the mesh point P as

faðA0; t þ dtÞ ¼ faðP ; t þ dtÞ þ DxA
ofaðP ; t þ dtÞ

ox
þ DyA

ofaðP ; t þ dtÞ
oy

þ 1
2
ðDxAÞ2

o2faðP ; t þ dtÞ
ox2

þ 1
2
ðDyAÞ2

o2faðP ; t þ dtÞ
oy2

þ DxADyA
o2faðP ; t þ dtÞ

oxoy
þO½ðDxAÞ3; ðDyAÞ3�; ð4Þ

where DxA ¼ xA þ eaxdt � xP , DyA ¼ yA þ eaydt � yP . Note that the above approximation has a truncation
error of the third order. Substituting Eq. (4) into Eq. (3) gives

faðP ; t þ dtÞ þ DxA
ofaðP ; t þ dtÞ

ox
þ DyA

ofaðP ; t þ dtÞ
oy

þ 1
2
ðDxAÞ2

o2faðP ; t þ dtÞ
ox2

þ 1
2
ðDyAÞ2

o2faðP ; t þ dtÞ
oy2

þ DxADyA
o2faðP ; t þ dtÞ

oxoy
¼ faðA; tÞ þ ½f eqa ðA; tÞ � faðA; tÞ�=s: ð5Þ

It is indicated that Eq. (5) is a differential equation, which only involves two mesh points A and P .
Solving Eq. (5) can provide the density distribution functions at all the mesh points. Eq. (5) can be con-

sidered as a new version of differential LBE, which can give very accurate numerical results. In this work,

we go further to develop a new solution procedure. In fact, our new development is inspired from the

Runge–Kutta method. As we know, the Runge–Kutta method is developed to improve the Taylor series

method in the solution of ordinary differential equations (ODEs). Like Eq. (5), Taylor series method in-

volves evaluation of different orders of derivatives to update the functional value at the next time level. For
a complicated expression of given ODEs, this application is very difficult. To improve the Taylor series

method, the Runge—Kutta method evaluates the functional values at some intermediate points and then

combines them (through the Taylor series expansion) to form a scheme with the same order of accuracy.

With this idea in mind, we look at Eq. (5). We know that at the time level t þ dt, the density distribution
function and its derivatives at the mesh point P are all unknowns. So, Eq. (5) has six unknowns in total. To
solve for the six unknowns, we need six equations. However, Eq. (5) just provides one equation. We need

additional five equations to close the system. As shown in Fig. 1, we can see that along the a direction, the
particles at five mesh points P , B, C, D, E at the time level t will move to the new positions P 0, B0, C0, D0, E0 at
the time level t þ dt. The density distribution functions at these new positions can be computed through Eq.
(1), which are given below

faðP 0; t þ dtÞ ¼ faðP ; tÞ þ ½f eqa ðP ; tÞ � faðP ; tÞ�=s; ð6Þ

faðB0; t þ dtÞ ¼ faðB; tÞ þ ½f eqa ðB; tÞ � faðB; tÞ�=s; ð7Þ

faðC0; t þ dtÞ ¼ faðC; tÞ þ ½f eqa ðC; tÞ � faðC; tÞ�=s; ð8Þ
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faðD0; t þ dtÞ ¼ faðD; tÞ þ ½f eqa ðD; tÞ � faðD; tÞ�=s; ð9Þ

faðE0; t þ dtÞ ¼ faðE; tÞ þ ½f eqa ðE; tÞ � faðE; tÞ�=s: ð10Þ

Using Taylor series expansion, faðP 0; t þ dtÞ, faðB0; t þ dtÞ, faðC0; t þ dtÞ, faðD0; t þ dtÞ, faðE0; t þ dtÞ in
above equations can be approximated by the function and its derivatives at the mesh point P . As a result,
Eqs. (6)–(10) can be reduced to

faðP ; t þ dtÞ þ DxP
ofaðP ; t þ dtÞ

ox
þ DyP

ofaðP ; t þ dtÞ
oy

þ 1
2
ðDxP Þ2

o2faðP ; t þ dtÞ
ox2

þ 1
2
ðDyP Þ2

o2faðP ; t þ dtÞ
oy2

þ DxPDyP
o2faðP ; t þ dtÞ

oxoy
¼ faðP ; tÞ þ f eqa ðP ; tÞ

�
� faðP ; tÞ

�
=s; ð11Þ

faðP ; t þ dtÞ þ DxB
ofaðP ; t þ dtÞ

ox
þ DyB

ofaðP ; t þ dtÞ
oy

þ 1
2
ðDxBÞ2

o2faðP ; t þ dtÞ
ox2

þ 1
2
ðDyBÞ2

o2faðP ; t þ dtÞ
oy2

þ DxBDyB
o2faðP ; t þ dtÞ

oxoy
¼ faðB; tÞ þ f eqa ðB; tÞ

�
� faðB; tÞ

�
=s; ð12Þ

faðP ; t þ dtÞ þ DxC
ofaðP ; t þ dtÞ

ox
þ DyC

ofaðP ; t þ dtÞ
oy

þ 1
2
ðDxCÞ2

o2faðP ; t þ dtÞ
ox2

þ 1
2
ðDyCÞ2

o2faðP ; t þ dtÞ
oy2

þ DxCDyC
o2faðP ; t þ dtÞ

oxoy
¼ faðC; tÞ þ f eqa ðC; tÞ

�
� faðC; tÞ

�
=s; ð13Þ

faðP ; t þ dtÞ þ DxD
ofaðP ; t þ dtÞ

ox
þ DyD

ofaðP ; t þ dtÞ
oy

þ 1
2
ðDxDÞ2

o2faðP ; t þ dtÞ
ox2

þ 1
2
ðDyDÞ2

o2faðP ; t þ dtÞ
oy2

þ DxDDyD
o2faðP ; t þ dtÞ

oxoy
¼ faðD; tÞ þ f eqa ðD; tÞ

�
� faðD; tÞ

�
=s; ð14Þ

faðP ; t þ dtÞ þ DxE
ofaðP ; t þ dtÞ

ox
þ DyE

ofaðP ; t þ dtÞ
oy

þ 1
2
ðDxEÞ2

o2faðP ; t þ dtÞ
ox2

þ 1
2
ðDyEÞ2

o2faðP ; t þ dtÞ
oy2

þ DxEDyE
o2faðP ; t þ dtÞ

oxoy
¼ faðE; tÞ þ f eqa ðE; tÞ

�
� faðE; tÞ

�
=s; ð15Þ

where

DxP ¼ eaxdt; DyP ¼ eaydt;

DxB ¼ xB þ eaxdt � xP ; DyB ¼ yB þ eaydt � yP ;

DxC ¼ xC þ eaxdt � xP ; DyC ¼ yC þ eaydt � yP ;

DxD ¼ xD þ eaxdt � xP ; DyD ¼ yD þ eaydt � yP ;

DxE ¼ xE þ eaxdt � xP ; DyE ¼ yE þ eaydt � yP :
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Eqs. (5), (11)–(15) form a system to solve for six unknowns. Now, we define

gi ¼ faðxi; yi; tÞ þ f eqa ðxi; yi; tÞ
�

� faðxi; yi; tÞ
�
=s; ð16Þ

fsigT ¼ f1;Dxi;Dyi; ðDxiÞ2=2; ðDyiÞ2=2;DxiDyig; ð17Þ

fV g ¼ ffa; ofa=ox; ofa=oy; o2fa=ox2; o2fa=o
2y; o2fa=oxoygT; ð18Þ

where gi is the post-collision state of the distribution function at the ith point and the time level t, fsigT is a
vector with 6 elements formed by the coordinates of mesh points, fV g is the vector of unknowns at the
mesh point P , which also has 6 elements. Our target is to find its first element V1 ¼ faðP ; t þ dtÞ. With above
definitions, Eqs. (5), (11)–(15) can be written as

gi ¼ fsigTfV g ¼
X6
j¼1

si;jVj; i ¼ P ;A;B;C;D;E; ð19Þ

where si;j is the jth element of the vector fsigT and Vj is the jth element of the vector {V}. Equation system
(19) can be put into the following matrix form

½S�fV g ¼ fgg; ð20Þ

where fgg ¼ fgP ; gA; gB; gC; gD; gEgT

½S� ¼ ½si;j� ¼

fsPgT
fsAgT
fsBgT
fsCgT
fsDgT
fsEgT

2
6666664

3
7777775
¼

1 DxP DyP ðDxP Þ2=2 ðDyP Þ2=2 DxPDyP
1 DxA DyA ðDxAÞ2=2 ðDyAÞ2=2 DxADyA
1 DxB DyB ðDxBÞ2=2 ðDyBÞ2=2 DxBDyB
1 DxC DyC ðDxCÞ2=2 ðDyCÞ2=2 DxCDyC
1 DxD DyD ðDxDÞ2=2 ðDyDÞ2=2 DxDDyD
1 DxE DyE ðDxEÞ2=2 ðDyEÞ2=2 DxEDyE

2
66666664

3
77777775
:

Note that the matrix ½S� only depends on the coordinates of mesh points, which can be computed once
and stored for the application of Eq. (20) at all time levels. In practical applications, it was found that the

matrix ½S� might be singular or ill-conditioned. To overcome this difficulty and make the method be more
general, we propose the following least squares-based LBM.
Eq. (19) has six unknowns (elements of the vector fV g). If Eq. (19) is applied at more than 6 mesh points,

then the system is over-determined. For this case, the unknown vector can be decided from the least square

method. For simplicity, let the mesh point P be represented by the index i ¼ 0, and its adjacent points be
represented by index i ¼ 1; 2; . . . ;M , where M is the number of neighbouring points around P and it should
be larger than 5. At each point, we can define an error in terms of Eq. (19), that is,

erri ¼ gi �
X6
j¼1

si;jVj; i ¼ 0; 1; 2; . . . ;M : ð21Þ

The square sum of all the errors are defined as

E ¼
XM
i¼0
err2i ¼

XM
i¼0

gi

 
�
X6
j¼1

si;jVj

!2
: ð22Þ

To minimize the error E, we need to set oE=oVk ¼ 0; k ¼ 1; 2; . . . ; 6, which leads to
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½S�T½S�fV g ¼ ½S�Tfgg; ð23Þ

where ½S� is a ðM þ 1Þ � 6 dimensional matrix, which is given as

½S� ¼

1 Dx0 Dy0 ðDx0Þ2=2 ðDy0Þ2=2 Dx0Dy0
1 Dx1 Dy1 ðDx1Þ2=2 ðDy1Þ2=2 Dx1Dy1
� � � � � �
� � � � � �
� � � � � �
1 DxM DyM ðDxMÞ2=2 ðDyMÞ2=2 DxMDyM

2
6666664

3
7777775

ðMþ1Þ�6

and fgg ¼ fg0; g1; . . . ; gMgT.
The Dx and Dy values in the matrix ½S� are given as

Dx0 ¼ eaxdt;Dy0 ¼ eaydt; ð24aÞ

Dxi ¼ xi þ eaxdt � x0;Dyi ¼ yi þ eaydt � y0 for i ¼ 1; 2; . . . ;M : ð24bÞ

Clearly, when the coordinates of mesh points are given, and the particle velocity and time step size are

specified, the matrix ½S� is determined. Then from Eq. (23), we obtain

fV g ¼ ð½S�T½S�Þ�1½S�Tfgg ¼ ½A�fgg: ð25Þ

Note that ½A� is a 6� ðM þ 1Þ dimensional matrix. From Eq. (25), we can have

faðx0; y0; t þ dtÞ ¼ V1 ¼
XMþ1

k¼1
a1;kgk�1; ð26Þ

where a1;k are the elements of the first row of the matrix ½A�, which are pre-computed before the LBM is
applied. Therefore, little computational effort is introduced as compared with the standard LBE. Note that

our method is actually a kind of interpolation methods, but the interpolation coefficients are built in the

formulation (26). So, we just need to compute these coefficients once, store them for the use in all the time

levels.

3. D2Q7 lattice model and implementation of boundary conditions

It can be seen that Eq. (26) is applied along the a direction. Here a can be any direction. This implies that
Eq. (26) can be uniformly applied to the different lattice models. As shown in [26], D2Q7 and D2Q9 can

provide the same results on the rectangular mesh, but D2Q7 requires less computational effort. So, in this

work, we select the D2Q7 model. The configuration of this model is shown in Fig. 2. The discrete velocity of

this model is defined as

ea ¼
ð0; 0Þ; a ¼ 0;
ðcos½ða � 1Þp=3�; sin½ða � 1Þp=3�Þc; a ¼ 1; 2; . . . ; 6:

�
ð27Þ

The parameter c is the particle streaming speed. The fluid kinetic viscosity is given by

t ¼ ð2s � 1Þ
8

c2dt ð28Þ
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and the equilibrium density distribution f eqa is chosen to be

f eqa ¼ q
1

2

"
þ 1
6
2
ea �U
c2

 
þ 4 ea �U

c2

� �2
�U2

c2

!#
: ð29Þ

The speed of sound of this model is cs ¼ c=2, and the equation of state is P ¼ qc2s for an ideal gas. Although
the proposed method has meshless feature, it is recommended to use a structured grid. This is because in

our method, only the coordinates of mesh points are involved. When a structured grid is used, it is much

easy for us to define the coordinates of mesh points. In our application, we use a structured grid, and take

M as 8 for convenience. As shown in Fig. 3, for an internal mesh point ði; jÞ (noted as ‘‘0’’ in Eq. (26)), the 8
neighbouring points are taken as ði� 1; j� 1Þ; ði� 1; jÞ; ði� 1; jþ 1Þ; ði; j� 1Þ; ði; jþ 1Þ, ðiþ 1; j� 1Þ;
ðiþ 1; jÞ; ðiþ 1; jþ 1Þ. Therefore, at each mesh point, we only need to store 9 coefficients a1;k,
k ¼ 1; 2; . . . ; 9 before Eq. (26) is applied. Note that the configuration of 9 mesh points as shown in Fig. 3 is
applied in all lattice directions ða ¼ 1; 2; . . . ; 6Þ.
Implementation of boundary conditions is an essiential issue in LBM. In this work, we found that a

complete half-way wall bounceback condition [22] is the most simple and efficent method in treating the

circular cylinder wall, where the non-slip condition holds. The complete half-way wall bounceback con-

dition, which originated from LGCA, assigns each fa the value of the fa in its opposite direction with no
relaxation on the bounceback points. The treament is independent of the direction, which gives us more

conveniences in treating complicated boundary problems. The complete half-way wall bounceback con-

dition has second order of accuaracy because macroscopic quantities such as stress force is evaluated on the

half-way wall between the bounceback row and the first flow row. As shown in Fig. 2, for the D2Q7 model,

at a boundary point, f1, f2 and f3 point to the flow field from the wall, which will be determined from the
boundary condition. f4, f5, f6 are computed by streaming from points inside the flow field. So, using the
half-way wall bounceback condition, f1, f2 and f3 are evaluated as

Fig. 2. Schematic plot of D2Q7 model on a solid boundary (thick black line).

Fig. 3. Schematic plot of neighboring point distributions around the point ði; jÞ.
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f1 ¼ f4; f2 ¼ f5; f3 ¼ f6: ð30Þ

On the far field boundary, it is reasonable to assume that the flow is a potential one with the density

distribution function at its equilibrium state. Periodic boundary condition is applied on the cut line, which

starts from the rear point of the cylinder wall and is along the positive x axis. In our computation, an
irrotational, potential flow field is taken as the initial condition. The upstream velocity U1 and density q1
are set to be 0.15 and 1.0, respectively. A typical sketch of this problem is shown in Fig. 4.

4. Simulation of flows around an impulsively started circular cylinder

The impulsively started cylinder problem has been considered as a good prototype of unsteady separated

flows. The present method was developed from the application of Taylor series expansion only in the spatial

directions. The time accuracy of present method is kept the same as the standard LBE. So, the simulation of

steady and unsteady flows around an impulsively started circular cylinder at the early stage is a good test

case for validation of our new method. In this work, the Reynolds number ðRe ¼ U1D=tÞ, based on the
upstream velocity U1 and the diameter of the cylinder D, is selected to be 20, 40, 550, 3000 and 9500,
respectively.

4.1. Flows at Re¼ 20 and 40

At these two low Reynolds numbers, it is well known that the flow will eventually develop into a steady
state. In our simulations, unless otherwise mentioned, the far field boundary is set at 50.5 diameters away

from the center of the cylinder and a 241� 181 O-type grid is used (a typical mesh is shown in Fig. 5). With

Fig. 4. A sketch of the flow past an impulsively started circular cylinder.

Fig. 5. Computational mesh for flow around a circular cylinder.
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this grid distribution, the time step, in units of D=ð2U1Þ, is equal to 0.00375, and the maximum grid stretch
ratio rmax (defined as the ratio of the maximum mesh spacing over the minimum mesh spacing) is 160.7.
Figs. 6–8 show the time evolution of the wake length L, separation angle hs and drag coefficient Cd

at Reynolds numbers of 20 and 40, where Cd is defined as Cd ¼ 2F � X=ðqU 2DÞ and F ¼R
½�pI þ qtðrUþUrÞ� � ndl � n is the normal vector of the cylinder surface. To test the accuracy of nu-
merical results obtained by the present method, experimental data given by Coutanceau and Bouard [9,10]

are also shown in Figs. 6 and 7 for comparison. Due to the lack of experimental data, only the numerical

results of Navier–Stokes equations for Cd at Reynolds number of 40 given by Koumoutsakos and Leonard

Fig. 6. Time evolution of the wake length for different Reynolds numbers (r, experimental data by Coutanceu and Bouard [10];

–, present results).

Fig. 7. Time evolution of the separation angle for different Reynolds numbers (r, experimental data by Coutanceu and Bouard [10];

–, present results).

Fig. 8. Time evolution of the drag coefficient for different Reynolds numbers (r, numerical results of Koumoutsakos and Leonard

[16]; –, present results).
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[16] are shown in Fig. 8 for comparison. The wake length and time are expressed in units of D=2 and
D=ð2U1Þ, respectively. From these three figures, we can see that the results obtained by the present method
generally agree well with experimental data and numerical results of Navier–Stokes equations except that

the separation angle at Re ¼ 40 has a little faster development than the experimental results.

Fig. 9. Streamlines at the final steady state for different Reynolds numbers. (a) Re ¼ 20, (b) Re ¼ 40.

Fig. 10. Vorticity contours at the final steady state for different Reynolds numbers. (a) Re ¼ 20, (b) Re ¼ 40.

Table 1

Comparisons of geometrical and dynamic parameters with previous studies

Reynolds number

20 40

L Ref. [29] 1.88 4.69

Ref. [19] 1.842 4.49

Present method 1.92 4.51

hs (degree) Ref. [29] 43.7 53.8

Ref. [19] 42.96 52.84

Present method 42.79 53.8

Cd Ref. [29] 2.045 1.522

Ref. [19] 2.152 1.499

Present method 2.111 1.574

Cp (front) Ref. [29] 1.269 1.114

Ref. [19] 1.233 1.133

Present method 1.230 1.147

Cp (rear) Ref. [29] )0.589 )0.509
Ref. [19] )0.567 )0.487
Present method )0.614 )0.555
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Figs. 9 and 10 show the streamlines and vorticity contours in the final steady state of our simulations,

respectively. As shown in Fig. 9, a pair of symmetric vortices is developed behind the cylinder at these two

Reynolds numbers. We also see that the secondary vortices have formed and remain unchanged as they are

confined by the primary vortices (see Fig. 10). The quantitative comparisons of the wake length, separation

angle, drag coefficient and pressure coefficients Cp at the front and rear stagnation points with previous
studies [19,29] are listed in Table 1. The pressure coefficient is defined as Cp ¼ 2ðp � p1Þ=ðqU 2Þ. Obviously,
good agreements are achieved between the results of our simulation and those of the previous studies.

Fig. 11. Vorticity distributions over the cylinder surface at different Reynolds numbers (r, results of Fornberg [30]; –, present results).

Table 2

Effect of mesh size on wake length, separation angle and drag coefficient

Grid number

181� 121 241� 181 301� 241

Re ¼ 20
L 1.943 1.92 1.90

hs (degree) 42.73 42.79 42.26

Cd 2.111 2.111 2.122

Re ¼ 40
L 4.478 4.51 4.502

hs (degree) 53.82 53.8 53.59

Cd 1.572 1.574 1.577

Table 3

Effect of far field boundary on wake length, separation angle and drag coefficient

Location of outer boundary

25.5D 50.5D 75.5D

Re ¼ 20
L 1.902 1.92 1.930

hs (degree) 45.48 42.79 42.87

Cd 2.056 2.111 2.099

Re ¼ 40
L 4.17 4.51 4.56

hs (degree) 55.42 53.8 53.89

Cd 1.557 1.574 1.565
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The vorticity distributions over the cylinder surface are displayed in Fig. 11. The numerical results of

Fernberg [30] by solving Navier–Stokes equations are also shown in this figure for comparison. Again,

good agreement is obtained between the present results and Navier–Stokes solutions.

We also studied the effects of grid sensitivity and location of the outer boundary at these two Reynolds

numbers. The detailed results for this study are listed in Tables 2 and 3, respectively. As shown in Table 2,

the grid size of 241� 181 is fine enough to obtain accurate numerical results. Table 3 shows that as the
outer boundary moves from 25:5D to 75:5D, the drag coefficient varies between 6%, the wake length in-
creases by 6% and the separation angle changes about 5%. This means that the effect of outer boundary is
not critical if it is above 25:5D.

4.2. Flows at Re¼ 550, 3000 and 9500

The flow around an impulsively started circular cylinder at these three Reynolds numbers is known to

develop eventually the three-dimensional phenomenon. However, careful flow visualization reveals that the

flow in the early stage of development in the laminar wake region is still two-dimensional. In the present

study, we only focus on the early stage of flow development.

For Reynolds numbers of 550 and 3000, the outer boundary is placed at 15.5 diameters away from the

center of the cylinder, the grid size is taken as 241� 121 with the maximum grid stretch ratio of rmax ¼ 159,
and the time step, in units of D=ð2U1Þ, is equal to 0.001875. For the Reynolds number of 9500, the cor-
responding parameters are taken as 3, 241� 301 with rmax ¼ 6:7 and Dt ¼ 0:00075, respectively.
Figs. 12–14 give the time evolution of the streamlines and vorticity contours at different Reynolds

numbers. For Reynolds numbers of 550 (Fig. 12) and 3000 (Fig. 13), both cases show that a pair of primary

Fig. 12. Instantaneous streamlines (left) and vorticity contours (right) at Re ¼ 550 (dash line represents the negative vorticity).
(a) t ¼ 1, (b) t ¼ 3, (c) t ¼ 5, and (d) t ¼ 7.
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symmetric vortices has been formed at the rear of the cylinder by t ¼ 1:0 and that their vorticity strengths
increase with the Reynolds number. As time increases, a pair of secondary symmetric vortices appears and

becomes stronger and stronger. However, it is confined by the primary vortices and cannot reaches to the

outer irrotational flow field. The layer that initially feeds the secondary vortices changes angle of orien-

tation in respect to the cylinder surface but it seems to remain a stable configuration beyond t ¼ 5:0. This is
the so-called a-phenomena observed experimentally by Bouard et al. [11]. For flow at Reynolds number of
9500 (Fig. 14), the so-called b-phenomena observed in [11] is also captured by our simulation. Initially a
stable configuration of a very thin layer of vorticity (‘‘forewake’’ in [11]) is formed before t ¼ 1:0. The core
of the vortex gradually separates into two parts, one forms a secondary vortex ðt ¼ 2:0Þ and the other is
absorbed into the primary vortex. As the secondary vortex becomes stronger, it rises rapidly, penetrates the

Fig. 13. Instantaneous streamlines (left) and vorticity contours (right) at Re ¼ 3000 (dash line represents the negative vorticity).
(a) t ¼ 1, (b) t ¼ 2, (c) t ¼ 3, (d) t ¼ 4, (e) t ¼ 5, and (f) t ¼ 6.
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primary vortex and reaches the outer flow at t ¼ 3. The primary vortex then rolls up and eventually de-
taches from the cylinder surface. This makes the strength of the secondary vortex reduce and a new vortex

forms. As the new vortex moves downstream, it gradually merges with the primary vortex, re-establishing

the link between the cylinder surface and the primary vortex ðt ¼ 4:0Þ. From these three figures, we can see
that the flow patterns in our simulation match well with the experimental and numerical findings given in

[11,13,14,16,19].
The time histories of vorticity distribution on the surface of the cylinder at different Reynolds numbers are

shown in Fig. 15. It is seen that the vorticity on the cylinder surface has a tendency to be stationary as time

increases, and seems to become stronger as Reynolds number is increased. For Reynolds number of 550, a

tertiary vortical region is observed at about �45� from the rear stagnation point at t ¼ 3 (Fig. 15(a)); For
Reynolds number of 3000, the strongest secondary vortex is formed at about�30� from the rear of the cylinder
at t ¼ 2:0.This secondary vortex induces in turn tertiary vortical regions of the cylinder surface (Fig. 15(b)).As
shown in Fig. 15(c), when flow at Reynolds number of 9500 develops beyond t ¼ 2, a series of tertiary vortical
phenomena appears on the surface of the cylinder and the unsteady separation procedure at smaller scales
repetitively occurs. The results shown in these figures agree well with the results of Koumoutsakos and

Leonard [16], Loc and Bourd [14], and Chang and Chern [15] by solving Navier–Stokes equations.

The radial velocity profiles obtained by present method on the symmetric axis in the near wake for

Re ¼ 3000 and 9500 and at different times are compared with those of Bouard and Coutanceau [11] in Fig.
16. For Re ¼ 3000, the agreement is very good up to t ¼ 3. There is a little discrepancy between the two
results at t ¼ 5. For the case of Re ¼ 9500, the present results have a little difference from those of Bouard

Fig. 14. Instantaneous streamlines (left) and vorticity contours (right) at Re ¼ 9500 (dash line represents the negative vorticity).
(a) t ¼ 1, (b) t ¼ 2, (c) t ¼ 3, and (d) t ¼ 4.
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and Coutanceau [11] at t ¼ 2. But at t ¼ 4, both results agree very well. It can be seen that the recirculation
is the strongest in the middle wake along the symmetric axis.

Figs. 17 and 18 show a quantitative comparison for the time evolution of the wake length and drag

coefficient between the present results and the experimental data [14] as well as the numerical results of

Navier–Stokes solvers [15]. Obviously, good agreement is achieved between our simulation and the pre-

vious works. The wake length increases linearly with time for Re ¼ 550. For Reynolds numbers of 3000 and
9500, the wake length has a slow growth at beginning and a fast development after t ¼ 3. These two stages
reflect the formation and destruction of the ‘‘ forewake’’. The development of the flow field is also man-

ifested in the drag curves. From Fig. 18, one can easily observe that all curves have a stationary tendency

with increase of time. The drag coefficient typically drops rapidly in the very beginning to a minimum value.

After that, it increases to a maximum value as the secondary vortices appear and then is slowly down to a

constant for Re ¼ 550 and 3000. For Re ¼ 9500, because the primary vortex begins to detach from the
cylinder surface before t ¼ 2 and the third vortex is formed in the shear layer at t � 2, the drag coefficient
gradually decreases in a short time and then increases with time. Again, general agreement is good although
a little discrepancy was found between the present results and those of Chang and Chern [15] in the middle

part of time evolution.

Fig. 16. Radial velocity profiles on the symmetric axis behind the cylinder for Re ¼ 3000 and 9500 at different times (r, experimental
data of Bouard and Coutanceau [11]; –, present results). (a) Re ¼ 3000, (b) Re ¼ 9500.

Fig. 15. Instantaneous vorticity distributions on the cylinder surface at different Reynolds numbers. (a) Re ¼ 550, (b) Re ¼ 3000, and
(c) Re ¼ 9500.
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5. Conclusions

The explicit Taylor series expansion- and least square-based lattice Boltzmann method is applied in this

work to simulate the flow past an impulsively started circular cylinder for Reynolds number range from 20

to 9500. The results of steady state flow at low Reynolds numbers and the early stage of unsteady flow at
moderate and high Reynolds numbers were obtained, and compared well with experimental data and

numerical results of Navier–Stokes equations available in the literature. In the present simulation, the

D2Q7 lattice model and non-uniform meshes were used. From the present work, it was found that our new

method is efficient and easy for application to flow problems with curved boundary and non-uniform mesh.

In fact, it keeps the local and explicit features of the standard lattice Boltzmann method. No solution of

differential equation is involved in the present method.
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